Definición de inversa de una matriz

Autor: | Última modificación: 27 de julio de 2022 | Tiempo de Lectura: 2 minutos
Temas en este post:

Algunos de nuestros reconocimientos:

Premios KeepCoding

La definición de inversa de una matriz forma parte de la serie de cálculos utilizados para llevar a cabo un análisis estadístico de los macrodatos. Comprender cómo se desarrolla te resultará muy útil y no te llevará demasiado tiempo; por ello, en este post, te explicamos cómo se produce la definición de inversa de una matriz para el manejo Big Data.

Definición de inversa de una matriz

La definición de inversa de una matriz hace referencia a una matriz cuadrada A que se escribe A-1 y se define como:

Definición de inversa de una matriz 1

En la que la I es la matriz identidad, por lo que:

Definición de inversa de una matriz 2

Por ejemplo

A continuación, te compartimos un ejemplo aleatorio para que comprendas mejor cómo funciona la definición de inversa de una matriz.

A<-matrix(c(1,3,5,2,3,4,1,7,8),nrow=3)
print("Tenemos una matriz A:")
A

[1] «Tenemos una matriz A:»

A matrix: 3 × 3 of type dbl

121
337
548
print("La inversa de A es:")
iA<-solve(A)
iA

[1] «La inversa de A es:»

A matrix: 3 × 3 of type dbl

-0.2666667-0.80.7333333
0.73333330.2-0.2666667
-0.20000000.4-0.2000000
print("Si multiplicamos una matriz por su inversa obtenemos una matriz identidad")
iA %*% A

[1] «Si multiplicamos una matriz por su inversa obtenemos una matriz identidad»

A matrix: 3 × 3 of type dbl

1.000000e+000-8.881784e-16
-1.665335e-1610.000000e+00
-1.665335e-1601.000000e+00

Resolver ecuaciones

Una de sus grandes ventajas es que podrás usar la matriz inversa para resolver ecuaciones según la siguiente guía:

Definición de inversa de una matriz 3

De manera que su desarrollo se da de la siguiente forma:

print("Calculamos el vector u como resultado de multiplicar A·v")
v <- c(1,2,3)
u <- A %*% v
u

[1] «Calculamos el vector u como resultado de multiplicar A·v»
A matrix: 3 × 1 of type dbl
8
30
37

print("Comprobamos que multiplicando u por la inversa de A obtenemos v de vuelta:")
iA %*% u

[1] «Comprobamos que multiplicando u por la inversa de A obtenemos v de vuelta:»
A matrix: 3 × 1 of type dbl
1
2
3

Sigue aprendiendo sobre el Big Data

En este post te hemos explicado este tipo de cálculo para el manejo estadístico de tus macrodatos. Sin embargo, ¡todavía queda mucho por aprender!

Te impulsamos a seguir formándote sobre muchas más herramientas dentro del manejo del Big Data, como Data Mining, Scala y Spark o Machine Learning 101, entre otras. Gracias a nuestro Bootcamp Full Stack Big Data, Inteligencia Artificial & Machine Learning podrás lograr esto y más. ¡Échale un vistazo!

👉 Descubre más del Big Data, Inteligencia Artificial & Machine Learning Full Stack Bootcamp ¡Descarga el temario!

👉 Prueba el Bootcamp Gratis por una Semana ¡Empieza ahora mismo!

👉 Conoce nuestros otros Bootcamps en Programación y Tecnología

[email protected]

La IA no te quitará el trabajo, lo hará quien sepa usarla

Conviértete en Data Scientist con el único Bootcamp que además te formará en Inteligencia Artificial Generativa para potenciar tu perfil.