Ejercicio práctico de clustering con proteínas

Autor: | Última modificación: 10 de noviembre de 2022 | Tiempo de Lectura: 3 minutos
Temas en este post:

En este artícuo realizaremos un ejercicio práctico de clustering con proteínas. Para ello, utilizaremos un dataset que contiene las siguientes especificaciones.

En este ejercicio práctico de clustering, el conjunto de datos consiste en los niveles de expresión de 77 proteínas/modificaciones de proteínas que produjeron señales detectables en la fracción nuclear de la corteza. Hay 38 ratones de control y 34 ratones trisómicos (síndrome de Down), para un total de 72 ratones. En los experimentos, se registraron 15 mediciones de cada proteína por muestra/ratón. Por lo tanto, para los ratones de control, hay 38×15 o 570 mediciones, y para los ratones trisómicos hay 34×15 o 510 mediciones. El conjunto de datos contiene un total de 1080 mediciones por proteína. Cada medida puede considerarse una muestra/ratón independiente.

Ejercicio práctico de clustering

En el ejercicio práctico de clustering, las ocho clases de ratones se describen en función de características como el genotipo, el comportamiento y el tratamiento. Según el genotipo, los ratones pueden ser de control o trisómicos. Según el comportamiento, algunos ratones han sido estimulados para aprender (shock de contexto) y otros no (contexto de shock). Para evaluar el efecto del medicamento memantina en la recuperación de la capacidad de aprender en ratones trisómicos, algunos ratones han sido inyectado con la droga y otros no.

Clases:

  • c – CS – s: ratones de control, estimulados para aprender, inyectados con solución salina (9 ratones).
  • c – CS – m: ratones de control, estimulados para aprender, inyectados con memantina (10 ratones).
  • c – SC – s: ratones de control, no estimulados para aprender, inyectados con solución salina (9 ratones).
  • c – SC – m: ratones de control, no estimulados para aprender, inyectados con memantina (10 ratones).
  • 1-CS-s: ratones con trisomia, estimulados para aprender, inyectados con solución salina (7 ratones).
  • t – CS – m: ratones con trisomia, estimulados para aprender, inyectados con memantina (9 ratones).
  • t – SC – s: ratones con trisomia, no estimulados para aprender, inyectados con solución salina (9 ratones).
  • t – SC – m: ratones con trisomia, no estimulados para aprender, inyectados con memantina (9 ratones).
#Ejercicio práctico de clustering
mouse <- read.csv ("data/Data_Cortex Nuclear.csv")
mouse_data <- mouse [ , 2 : 78]

boxplot (mouse_data)
Ejercicio práctico de clustering
#Ejercicio práctico de clustering
library (caret)

Loading required package: lattice

#Ejercicio práctico de clustering
preProcValues <- preProcess (mouse data, method = c ("center", "scale"))
preprocValues

Created from 1080 samples and 77 variables

Pre-processing:

  • centered (77)
  • ignored (0)
  • scaled (77)
#Ejercicio práctico de clustering
mouse data transformed <- predict (preProcValues, mouse data)
boxplot (mouse_data_transformed [ , 1 : 10])
Ejercicio práctico de clustering con proteínas 1
#Ejercicio práctico de clustering
q <- c ()
for (k in 1 : 20) {
myclust <- kmeans (mouse_data_transformed, k)
q [k] <- myclust$betweenss / mycluststotss
}
plot (q)
Ejercicio práctico de clustering con proteínas 2
#Ejercicio práctico de clustering
myclust <- kmeans (mouse_data_transformed, 8)
table (mouse$class, myclust$cluster)
12345678
c – CS – m92034154162032
c – CS – s530390121444
c – CS – m151066244202
c – CS – s100068282180
t – CS – m035260270047
t – CS – s03324033240
t – CS – m161055334260
t – CS – s145405262340
#Ejercicio práctico de clustering
myclust <- kmeans (mouse_data_transformed, 9)
table (mouse$class, myclustscluster)
table (mouse$Genotype, myclust$cluster)
table (mouse$Treatment, myclust$cluster)
table(mouse$Behavior,myclust$cluster)
123456789
c – CS – m203817186137013
c – CS – s3231240354000
c – CS – m009613420935
c – CS – s1036722901815
t – CS – m913430206800
t – CS – s111200005433
t – CS – m70043212801026
t – CS – s2109743711451
123456789
Control5369531466517772763
Ts65Dn4827725027651335830
123456789
Memantine36516912263311056619
Saline6545567429511056619
123456789
C/S729610418116199316
S/C290211788176118277

¿Qué sigue?

Si quieres seguir aprendiendo, te invitamos a inscribirte en nuestro Big Data, Inteligencia Artificial & Machine Learning Full Stack Bootcamp, una formación intensiva con el que en muy pocos meses estarás listo para incursionar en el mercado laboral y destacar en el sector tecnológico. ¡Solicita ahora más información!

👉 Descubre más del Big Data, Inteligencia Artificial & Machine Learning Full Stack Bootcamp ¡Descarga el temario!

👉 Prueba el Bootcamp Gratis por una Semana ¡Empieza ahora mismo!

👉 Conoce nuestros otros Bootcamps en Programación y Tecnología

[email protected]

¿Trabajo? Aprende a programar y consíguelo.

¡No te pierdas la próxima edición del Aprende a Programar desde Cero Full Stack Jr. Bootcamp!

 

Prepárate en 4 meses, aprende las últimas tecnologías y consigue trabajo desde ya. 

 

Solo en España hay más de 120.400 puestos tech sin cubrir, y con un sueldo 11.000€ por encima de la media nacional. ¡Es tu momento!

 

🗓️ Próxima edición: 13 de febrero

 

Reserva tu plaza descubre las becas disponibles.