Ejercicio sobre espacios vectoriales

| Última modificación: 4 de octubre de 2024 | Tiempo de Lectura: 2 minutos

En este post resolveremos un ejercicio sobre espacios vectoriales, que consiste en modelar los siguientes prototipos de coches en un espacio vectorial:

ModeloPrecio ()Velocidad máximaTiempo de aceleración
Porsche Taycan110000280 km / h3.8 s
Tesla390000260 km / h3.5
BMW i360000160 km / h7s
Ejercicio sobre espacios vectoriales

Ejercicio sobre espacios vectoriales

Para modelar estos coches a un espacio vectorial debemos crear los vectores correspondientes para cada uno de ellos. ¿Cómo serán dichos vectores si tenemos en cuenta que nuestro espacio vectorial va a ser de 3 dimensiones (precio, velocidad, aceleración)?

Taycan = (110000, 280, 3.8)

Tesla = (90000, 260, 3.5)

i3 (60000, 160, 7)

Vamos a graficar estos vectores en nuestro espacio vectorial y ver que sucede:

#Ejercicio sobre espacios vectoriales
import numpy as np
from matpltlib import pyplot
from mpl_toolkits.mplot3d import Axes3D
from numpy.random import rand
from pylab import figure

X = np.array ([[110000, 280, 3.8],
[90000, 260, 3.5],
[60000, 160, 7]])
#Ejercicio sobre espacios vectoriales
X.shape

(3, 3)

Definimos un nombre para cada vector para poder visualizarlos:

#Ejercicio sobre espacios vectoriales
y = ['Taycan', 'Tesla', 'i3']

fig = figure ()
ax = Axes3D (fig)

for i in range (len (X)):
      ax.scatter (X [i, 0],
                          X [i, 1],
                          X [i, 2],
                          color = 'b')

     ax.text (X [i, 0],
                   X [i, 1],
                   X [i, 2],
                   f ' {str (y [i])}',
                  size = 20,
                  zorder = 1,
                  color = 'k')

ax.set_xlabel ('precio')
ax.set_ylabel ('velocidad')
ax.set_zlabel ('aceleración')
Ejercicio sobre espacios vectoriales

Ya tenemos modelados nuestros coches a un espacio vectorial, en este caso un espacio vectorial de 3 dimensiones.

Ahora, pongamos una situación hipotética: ¿qué sucedería si tenemos más de tres dimensiones? Aquí hemos elegido modelos de estos coches a un espacio vectorial de solo 3 dimensiones para poder representarlo gráficamente. No obstante, normalmente, solemos tener miles de dimensiones/features, en concreto en NLP.

Las dimensiones, por tanto, hacen referencia al número de features que se han elegido para modelar en espacios vectoriales.

Ahora que hemos visto cómo funciona la estructura de un espacio vectorial, puedes seguir aprendiendo sobre Big Data, una de las disciplinas más demandadas hoy en día. Para ello, entra a nuestro Big Data, Inteligencia Artificial & Machine Learning Full Stack Bootcamp, la formación intensiva e íntegra en la que podrás adquirir todos los conocimientos teóricos y prácticos necesarios para entrar en el mercado laboral en poco tiempo. ¡Anímate a impulsar tu carrera laboral y solicita más información!

Data Scientist

¡PONTE A PRUEBA!

¿Te gusta EL BIG DATA Y EL DATA SCIENCE?

¿CREES QUE PUEDES DEDICARTE A ELLO?

Sueldos de hasta 80K | Más de 40.000 vacantes | Empleabilidad del 100%

KeepCoding Bootcamps
Resumen de privacidad

Esta web utiliza cookies para que podamos ofrecerte la mejor experiencia de usuario posible. La información de las cookies se almacena en tu navegador y realiza funciones tales como reconocerte cuando vuelves a nuestra web o ayudar a nuestro equipo a comprender qué secciones de la web encuentras más interesantes y útiles.