¿Qué es la intuición artificial en machine learning?

Autor: | Última modificación: 13 de diciembre de 2022 | Tiempo de Lectura: 3 minutos
Temas en este post: ,

¿Sabes qué es la intuición artificial en machine learning? Si has trabajado con árboles de decisión, seguro que has escuchado el concepto de intuición artificial, que consiste en una cadena de if else. A continuación, profundizamos en dicho término.

Intuición artificial en árboles de decisión

Un árbol es un conjunto, una cadena de if else. Más adelante veremos en qué se basa el algoritmo para determinar si cada una de esas decisiones que toma es un if o un else.

Supongamos el problema de clasificación con el ejemplo de concesión de un préstamo:

¿Qué es la intuición artificial en machine learning? 1

Partimos de una pregunta inicial: la cantidad de los ingresos. Formulado de otra manera, sería:

  • ¿Tiene la persona unos ingresos elevados? La respuesta binaria consiste en un sí y un no.
    • Si la respuesta a esa pregunta es un no, surge otra pregunta: ¿tiene esta persona un aval? De nuevo la respuesta es binaria: sí o no. En este caso acabamos aquí:
      • Si la respuesta es que no, no se concede el préstamo.
      • Si la respuesta es que sí, se procede a conceder el préstamo.
    • Volvemos a la pregunta de los ingresos. Si tiene ingresos elevados, surge otra pregunta, que es: ¿tiene otro préstamo?
      • Si la respuesta es sí, no se concede el préstamo.
      • Si la respuesta es no, se concede el préstamo.

Esto que estamos viendo aquí es un árbol de decisión. En este caso tiene profundidad 2, tiene 4 hojas, 2 nudos intermedios y, como podemos observar, este tipo de algoritmos es muy interpretable, es decir, la intuición artificial es muy alta.

Clasificación binaria con datos reales

En definitiva, esta metodología es un árbol de decisión. Ahora bien, ¿cómo trasladamos este proceso de intuición artificial a datos? Pues segmentando el espacio de características en regiones sencillas.

Lo que hace el árbol de decisión, es decir, lo que hace el algoritmo que tiene detrás de la intuición artificial, es segmentar el espacio de características en regiones sencillas mediante líneas rectas. Por ejemplo:

intuición artificial

Aquí tenemos dos ejes, x1 y x2, y una serie de variables que, como vemos claramente, se trata del problema de XOR, es decir, no es linealmente separable, pero vemos que sí existe una separación perfecta bastante identificable. Esto significa que este problema se podría separar cogiendo todos los puntos azules y todos los puntos rojos y dividiéndolos en cuatro grupos. No obstante, linealmente no es posible hacer esta división.

Entonces, la primera pregunta relacionada con la intuición artificial que hace el árbol es: ¿x1 es mayor o menor que a?

¿Qué es la intuición artificial en machine learning? 2

Si es menor que a, vuelve a segmentar el espacio de características, usando esta vez x2. De modo que, se une al árbol la pregunta: ¿es x2 mayor o menor que b?

¿Qué es la intuición artificial en machine learning? 3

Si x2 es menor que b, le corresponde la cuadrícula señalada con color naranja, con un x1 menor que a y un x2 menor que b.

¿Qué es la intuición artificial en machine learning? 4

Si x2 es mayor que b, tiene la cuadrícula que está justo arriba del recuadro naranja, señalada con las x color rojo, con un x1 menor que a y un x2 mayor que b.

El árbol podría haber acabado aquí, porque ya hemos hecho una clasificación perfecta. Técnicamente, no ha acabado, porque nos falta la parte de la derecha, en donde x1 es mayor que a. En ese caso, la siguiente pregunta que cabría hacer es: ¿es x2 mayor o menor que c?

¿Qué es la intuición artificial en machine learning? 5

Si x2 es menor que c, corresponde a la otra parte del cuadro, señalada con morado, con un x1 mayor que a y un x2 menor que c:

¿Qué es la intuición artificial en machine learning? 6

Si x2 es mayor que c, estamos en el conjunto de la parte superior del cuadro, en donde se encuentran las x color azul, con un x1 mayor que a y x2 mayor que c.

Nomenclatura

Por tanto, tenemos que:

  • Las hojas son la región y = 1
  • Los nodos intermedios son x1 y x2
  • Las ramas son todos los <a, >a, <b, >b, <c, >c
¿Qué es la intuición artificial en machine learning? 7

A modo de conclusión

Una vez segmentado el espacio de características, para cada nueva observación que cae en alguna de las regiones se predice:

  • Clasificación: moda de etiquetas (majority vote).
  • Regresión: media de etiquetas.

Ten en cuenta que existen distintos algoritmos para implementar árboles de decisión: ID3, C4.5, CART… Scikit-learn utiliza CART, que solo permite decisiones binarias (cada nodo tiene dos ramas).

¿Qué sigue?

Si quieres seguir aprendiendo más sobre Big Data e intuición artificial, tenemos nuestro Big Data, Inteligencia Artificial & Machine Learning Full Stack Bootcamp, una formación en la que aprenderás todo lo necesario para incursionar en el mercado laboral. ¡Anímate a impulsar tu futuro y solicita más información!

👉 Descubre más del Big Data, Inteligencia Artificial & Machine Learning Full Stack Bootcamp ¡Descarga el temario!

👉 Prueba el Bootcamp Gratis por una Semana ¡Empieza ahora mismo!

👉 Conoce nuestros otros Bootcamps en Programación y Tecnología

[email protected]

¿Trabajo? Aprende a programar y consíguelo.

¡No te pierdas la próxima edición del Aprende a Programar desde Cero Full Stack Jr. Bootcamp!

 

Prepárate en 4 meses, aprende las últimas tecnologías y consigue trabajo desde ya. 

 

Solo en España hay más de 120.400 puestos tech sin cubrir, y con un sueldo 11.000€ por encima de la media nacional. ¡Es tu momento!

 

🗓️ Próxima edición: 13 de febrero

 

Reserva tu plaza descubre las becas disponibles.