Medida de calidad con Average Silhouette Width (ASW)

Autor: | Última modificación: 10 de noviembre de 2022 | Tiempo de Lectura: 2 minutos
Temas en este post:

¿Sabes que es la medida de calidad con Average Silhouette Width, también conocida por sus siglas ASW? ¡En este post te lo explicamos!

Medida de calidad con Average Silhouette Width (ASW)

La medida de calidad con Average Silhouette Width nos dice cómo de similar es un objeto a su propio clúster (cohesión) en comparación con otros clústeres (separación).

Su valor va entre:

  • -1: la muestra no se parece demasiado a sus vecinos y se diferencia poco de las de otro clúster.
  • 1: la muestra se parece mucho a sus vecinos y muy poco a las de otro clúster,

Se da un valor por muestra; si la mayor parte de las muestras tienen un valor alto, la configuración del clúster es buena.

Su valor s(i) se calcula como:

Medida de calidad con average Silhouette width

Donde a(i) es la media de la distancia entre i y todos los puntos de su mismo clúster:

Medida de calidad con Average Silhouette Width (ASW) 1

b(i) es la distancia media de/al clúster más parecido (el que tiene una menor distancia media):

Medida de calidad con Average Silhouette Width (ASW) 2

C(i) es el clúster al cual i pertenece , mientras que lC(i)l es el número de elementos en ese clúster.

En esta muestra de datos podríamos calcular el silhouette para todos los valores de clúster. Cuando tengamos un silhouette medio más alto, va a ser mucho mejor.

Ejercicio sobre medida de calidad con Average Silhouette Width

#Medida de calidad con Average Silhouette Width 
options (repr.plot.height = 4, repr.plot.width = 6, repr.plot.res = 300)

N <- 300
x1 <- c (rnorm (N, mean = 2, sd = 2), rnorm (N, mean = -2, sd = 2), rnorm (N, mean = -5, sd = 1))
x2 <- c (0.4 * x1 + c (rnorm (N, mean = 3, sd = 2), rnorm (N, mean = -3, sd = 1), rnorm (N, mean = 7, sd = 1)))
df <- data.frame (x1, x2)

library (ggplot2)
ggplot (data = df, aes (x = x1, y = x2)) + geom_point (alpha = 0.7)
Medida de calidad con Average Silhouette Width (ASW) 3
#Medida de calidad con Average Silhouette Width 
library (cluster)

q <- c ()
for (k in 2 : 8) {
myclust <- kmeans (df, k)
ss <- silhouette (myclust$cluster, dist (df))
q [k] <- mean (ss[ , "sil_width"])
}
plot(q)
Medida de calidad con Average Silhouette Width (ASW) 4
#Medida de calidad con Average Silhouette Width 
k <- 3
myclust <- kmeans (df, k)
ss <- silhouette (myclust$cluster, dist (df))
summary (ss)
plot (ss, col = 1 : k, border = NA)
Medida de calidad con Average Silhouette Width (ASW) 5
Medida de calidad con Average Silhouette Width (ASW) 6

¿Ahora qué sigue?

Una vez entendido este concepto de silhouette y cómo puede influenciar en los procesos de clustering, podemos pasar al siguiente nivel. Para ello, te invitamos a seguir nuestro Big Data, Inteligencia Artificial & Machine Learning Full Stack Bootcamp, una formación intensiva con la que podrás adquirir todos los conocimientos necesarios para incursionar en uno de los mercados laborales más prolíficos del mundo IT y subir un escalón más para lograr tu sueño de ser un gran profesional. ¡Anímate ahora a solicitar más información!

👉 Descubre más del Big Data, Inteligencia Artificial & Machine Learning Full Stack Bootcamp ¡Descarga el temario!

👉 Prueba el Bootcamp Gratis por una Semana ¡Empieza ahora mismo!

👉 Conoce nuestros otros Bootcamps en Programación y Tecnología

[email protected]

¿Trabajo? Aprende a programar y consíguelo.

¡No te pierdas la próxima edición del Aprende a Programar desde Cero Full Stack Jr. Bootcamp!

 

Prepárate en 4 meses, aprende las últimas tecnologías y consigue trabajo desde ya. 

 

Solo en España hay más de 120.400 puestos tech sin cubrir, y con un sueldo 11.000€ por encima de la media nacional. ¡Es tu momento!

 

🗓️ Próxima edición: 13 de febrero

 

Reserva tu plaza descubre las becas disponibles.