¿Qué es el menor complementario?

| Última modificación: 12 de abril de 2024 | Tiempo de Lectura: 2 minutos
Premios Blog KeepCoding 2025

Business Intelligence & Big Data Advisor & Coordinadora del Bootcamp en Data Science, Big Data & Machine Learning.

Si estás inmerso en el mundo del Big Data y el machine learning, seguro que te has topado alguna vez con los términos menor complementario y adjunto de un elemento. Por ello, en este artículo, te enseñaremos qué es el menor complementario y cuál es la relación que este concepto guarda con el adjunto de una matriz.

Adjunto de un elemento

Se llama Aij de un elemento aij al valor:

Aij = (-1)i + j. aij

Es decir, si i + j es par, coincide el adjunto con el menor complementario, mientras que si i + j es impar, tendrán valores opuestos.

¿Cómo lo hace Numpy? — Menor complementario

Dada una matriz cuadrada de orden n, A = (aij), se denomina menor complementario aij de un elemento aij al determinante de la matriz de orden n – 1, que resulta de suprimir en la matriz A la fila i y la columna j.

Observa esta matriz:

Menor complementario

El menor complementario al elemento a11 = viene dado por:

menor complementario
menor complementario

El menor complementario al elemento a22 = 5 viene dado por:

menor complementario
menor complementario

Numpy internamente no aplica la regla de Sarrus, porque a nivel computacional no es tan eficiente como calcular el determinante aplicando el menor complementario. Además, no es extensible a matrices de mayor orden.

def getMatrixMinor (m, j):
       return [row [:j] + row [j + 1:] for row in (m [:0] + m [1:])]

defgetMatrixDeterminant (m):
     if  len (m) == 2:
          return m [0] [0] * m [1] [1] - m [0] [1] * m [1] [0]

     determinant = 0
for c in range (len (m)):
      minor_matrix = getMatrixMinor (m, c)
      determinant += ((-1) ** c) * m [0] [c] * getMatrixDeterminant (minor_matrix)
      return determinant      
D = [[5,   0,   2],   [3,   1,   1],   [0,   1,   2]]
getMatrixDeterminant (D)

11

%timeit getMAtrixDeterminant (D)

4.14 µs

%timeit np.linalg.det (D)

6389 µs

¿Quieres seguir aprendiendo?

Ahora que has visto cómo funciona el menor complementario, qué es y cómo se relaciona con el adjunto de un elemento o de una matriz, puedes seguir adelante. Para destacar en una de las disciplinas más demandadas y mejor pagadas del mundo laboral, no te pierdas el Big Data, Inteligencia Artificial & Machine Learning Full Stack Bootcamp. Con esta formación íntegra y de alta intensidad, adquirirás, en pocos meses, los conocimientos teóricos y prácticos que te ayudarán a obtener el trabajo de tus sueños. ¡Entra ya para solicitar información y anímate a cambiar tu futuro!

Noticias recientes del mundo tech

¡CONVOCATORIA ABIERTA!

Big Data & Data Science

Full Stack Bootcamp

Clases en Directo | Acceso a +600 empresas | 98% de empleabilidad

Fórmate con planes adaptados a tus objetivos y logra resultados en tiempo récord.
KeepCoding Bootcamps
Resumen de privacidad

Esta web utiliza cookies para que podamos ofrecerte la mejor experiencia de usuario posible. La información de las cookies se almacena en tu navegador y realiza funciones tales como reconocerte cuando vuelves a nuestra web o ayudar a nuestro equipo a comprender qué secciones de la web encuentras más interesantes y útiles.