¿Qué es Apache Parquet?

Autor: | Última modificación: 15 de junio de 2022 | Tiempo de Lectura: 3 minutos
Temas en este post:

Apache Parquet se ha establecido como una gran herramienta para la facilitación de la gestión de los macrodatos en el sistema de computación de Apache Spark. Este cuenta con muchas más herramientas y procesos que podrán ayudarte durante el procesamiento de la información, logrando un amplio catálogo de posibilidades con estrategias para desarrollar un análisis efectivo de los datos.

Por lo tanto, conocer cómo funcionan y se desenvuelven es de suma relevancia para un data scientist eficaz. De manera que no solo es necesario saber qué es Apache Parquet, también hay que comprender dónde se encuentra como parte de este amplio sistema de computación.

En KeepCoding reconocemos la importancia de ello, por lo que, en este post, te exponemos qué es Apache Parquet y cuál es su implicación dentro del universo del manejo Big Data.

¿Qué es Apache Spark?

Antes de exponerte qué es Apache Parquet, debes recordar que esta es una herramienta de Apache Spark, es decir, el sistema de computación basado en Hadoop Map Reduce. De manera que las tareas de este sistema consisten en permitir dividir y paralelizar los jobs para que estos trabajen con los datos de forma distribuida.

Por otra parte, uno de los aspectos más importantes referentes a Apache Spark es que proporciona diferentes APIs (Interfaz de programación de aplicaciones) para funcionar, como Core, SQL, Streaming, Graph y Machine Learning. De igual forma, Spark es un multilenguaje que se puede desarrollar en lenguajes de programación como Scala, Java, Lenguaje JVM (Máquina virtual Java), Python o R.

¿Qué es Spark Stack?

Ahora bien, dentro del sistema de cómputo de Apache Spark se encuentra Spark Stack, el sistema informático de la arquitectura de Apache Spark que posee una gran variedad de componentes con los que se desarrolla. Su principal objetivo es que dichos componentes logren potenciarse por medio del motor central del sistema.

Precisamente, por medio de este sistema informático de la arquitectura se hace uso de Apache Parquet en los servicios ofrecidos por Apache Spark.

¿Qué es Apache Parquet?

Apache Parquet es un formato de almacenamiento en columnas enfocado en optimizar el procesamiento y el modelado de los datos. Por ello, es un formato de código abierto (open source) que ofrece alternativas de almacenamiento, codificación, compresión y lenguajes de programación, entre otras.
Para ello, un fichero de Apache Parquet esta compuesto por tres piezas que te compartimos a continuación:

  • Grupo de filas o row group: como dice su nombre, este es el conjunto de filas en formato columnas
  • Cuenta de columna o column chunk: de esta forma, los datos de una columna en un grupo se pueden leer de manera independiente para optimizar las lecturas.
  • Página o page: hace referencia al almacenamiento de los datos.
  • Apache Spark optimiza las lecturas: de esta manera, el sistema permite leer los distintos row group o Grupo de filas que fueron asignados a estos datos en distintas tareas que son distribuidas en el clúster de forma independiente.

De manera que, su funcionamiento se remite a la tarea de optimizar la lectura y el almacenamiento de los datos.

Ahora, te compartimos un ejemplo ilustrativo que muestra cómo, si seleccionas unas columnas específicas, el filtro se empuja hacia el lector de Apache Parquet, de forma que este permite leer únicamente esas columnas:

¿Qué es Apache Parquet? 1

Por otra parte, una de sus mayores ventajas es que esta herramienta se utilizad para procesamiento en batch, es decir, un archivo en el que el procesamiento de los datos se produce por medio de lotes de la información.

Spark SQL: Apache Parquet

También podrás hallar a Apache Parquet dentro del componente Spark SQL en Apache Spark, puesto que esta herramienta soporta de manera nativa la lectura y escritura en ficheros Parquet.

Al leer en Parquet, las columnas se marcan como nullable por razones de compatibilidad, es decir, con valores especiales de NULL.
Por otra parte, Apache Parquet te permite realizar una partición de los datos, de forma que optimiza sus lecturas y los datos se almacenan en distintos directorios. Por este motivo, se van codificando los valores en el nombre del directorio según cada una de las particiones establecidas.

¿Qué es Spark SQL en Apache Spark? 1

Aprende más sobre el procesamiento del Big Data

En el desarrollo de este post, te hemos expuesto qué es Apache Parquet dentro del mundo del procesamiento Big Data. Aun así, todavía queda mucho más por aprender al respecto si tu objetivo es convertirte en un experto dentro de este ámbito del sector tecnológico. Por eso te aconsejamos ponerlo en práctica por medio de la metodología ensayo y error hasta que consigas comprenderlo del todo.

Desde KeepCoding, sabemos que instruirte por tu cuenta puede resultar complicado y tedioso, por ello, te presentamos el Bootcamp Full Stack Big Data, Inteligencia Artificial & Machine Learning. Gracias a este bootcamp intensivo, podrás contar con todos los conocimientos necesarios para ser un experto en el ecosistema de sistemas, lenguajes y herramientas del Big Data a la par que los llevas a la práctica guiado por grandes profesionales del sector IT. ¡No esperes más para inscribirte y dale un giro a tu carrera profesional!

👉 Descubre más del Big Data, Inteligencia Artificial & Machine Learning Full Stack Bootcamp ¡Descarga el temario!

👉 Prueba el Bootcamp Gratis por una Semana ¡Empieza ahora mismo!

👉 Conoce nuestros otros Bootcamps en Programación y Tecnología

[email protected]

¿Sabías que hay más de 5.000 vacantes para desarrolladores de Big Data sin cubrir en España? 

En KeepCoding llevamos desde 2012 guiando personas como tú a áreas de alta empleabilidad y alto potencial de crecimiento en IT con formación de máxima calidad.

 

Porque creemos que un buen trabajo es fuente de libertad, independencia, crecimiento y eso ¡cambia historias de vida!


¡Da el primer paso!